
Iterative Solution of Large, Sparse, Linear Systems
on a Static Data Flow Architecture: Performance Studies

Daniel A . Reed
Merrell L. Patrick

(NASA-CR-187301) I T E R A T I V E SOLUTION O f N90-71370 L A R G E , SPARSE, L I N E A R SVSTEUS ON A S T A T I C
O A T 4 FLO# ARCHITECTURE: PERF6hkANCE STUDIES

Science) 4 5 p 00/61 0 2 9 5 3 8 9

(Research I n s t . for Advanced Computer
Unci as

May, 1955

Research Institute fur Advanced Computer Science
NASA Arnes Research Center

RIACS TR 85.4

R I A !
Research Institute for Advanced Computer Science

Iterative Sdutim of Large, Sparoe, Linear Systems
on a Statit Data Flow Architecture: Pertormanee Studies

Daniel A . Reed t

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

Mmcll L. Potticks

Ramarch Institute for Advanced Computer Sc ice
NASA Amen Rcseanh Center

Mo&tt Field, CA 94035

and
Department of Computer h c e

Duke University
Durham, North Cuolina 27706

ABSTRACT

The applicability of a static data flow architectures to the iterative soh-
tion of spame linear systems of equations is investigated.
h andytk perform8nce modd of a static data flow eompuktion is

developed. This modd induda both Wtid purrllalinn, amcurrent ex*
cution in multiple PES, and pipdining, the streaming of data from army
memories through the Pa.

The performance modd b d to analyse the perform8nce of a row
partitioned, iterative algorithm for rolving spu# linsu ry.tcmr of alga
braic equationa Bued on the -Ita of thm urr lydr , daign puunetem
for the static data flow architecture aa a function of matrix . p M i t y and
dimedon are propo#d.

tSupported in put by NSF Grant No. NSF DCR 81-17948 and an IBM
Faculty Development Grant.
$Supported in part by the National Aeronautics and Space Adminiia-
tion under NASA Contract No. NASZ-11530 to the Univemitics Space
Research M i t i o n (USRA).

Inbrodpetia

Large, spame linear systems of algebraic equations frequently arise during the

solution of such scientific and engineering problems as structural analysis, fluid

dynamics, and chemical reactions. Whether these linear systems are solved by direct

methods (ag. , LU decomposition) or by iterative ones, the computational expense is

enormourn and parallel solution is attractive.

In earlier work [Reed84], we developed a model for a general claw of asynchronous,

iterative algorithms that solve a linear system by creating cooperating tasks that each

compute a portion of the solution vector. The model was analyzed m d the

recommended number of tasks WM then computed as a function of matrix spusity and

dimension using intertask data transfer and task computational complexity functions.

In [ReedBSa], we considered the implementation of the model on a broadcast bus

architecture. Performance models of the broadcast bus architecture were derived and

analyzed as a function of matrix sparsity and dimension and the costs of

communication, synchroniration, md computation. Results of the model showed that a

broadcast bus architecture with a m d a t number of procesnors could signscantly

reduce the expected computation time for mlving sparse linear systems.

However, aa processom are added to the broadcast bus architecture, performance is

ultimately hnited by bus queueing delaya Data flow architectures have been touted as

a means of achieving large aa l e parallelism. Hence, it seems natural to consider their

applicability to the iterative solution of nparse l i a r systems.

In the d d e r of the paper, we define parde l execution time modela for solving

sparse linear systems, iteratively, on the static data flow architecture proposed by

Dennis [LknnSla]. Two dflerent implementations of a parallel solution schema are

considend and their parallel execution timea are compared using the models.

Parametem to the performance model include the size of the data flow d i e ; the

number and speed of floating point functional units; the number and speed of logical

units; the number, &, m d accem time of array memories; and interconnection network

Using the performance mod&, we recommend design parametem for the static

data flow architecture baaed on iteration matrix dimemion and sparsity.

Conider a liincu system of equationr of the form

Kt = f (1)
where K is a l uge N x N spuk mmtrix urd t and f are vcctom of length N. Such

sys tem are frequently rewritten in the form

t = A r + e

and solved using the i tar t ion formula

where z and c are N-vectors and A is another spame N x N matrix. Although A is

a function of K , and c is a function of K and the f vector, there are many ways to

choose A and c such that (2) describes a convergent iterative scheme for (1). We only

assume that they are choscn such that the q u e n c e of iterates)> converges to the

solution. h e f o r t h , we condder only the parallel implementation of the computation

M/P8t?kk S ~ L l n U r S ~

defined by (2).

Static Data Flaw Machine Architecture

4

In recent years, many alternatives to the classic von Neumann architecture have

been proposed, notably data flow architectures IArvi82, Denn83, Denn848, Denn84b,

Wats821. Although their designs and operating paradigms differ, all data flow

architectures share the design goal of increased performance via parallelism. This

parallelism arises by eliminating the von Neumann program counter and executing an

instruction level precedence graph. Rather than cursorily investigate the performance

of several data flow architectures, we have chosen to examine one, the MIT statk data

flow architecture proposed by Dennis [Denn84a], carefully.

The latest MIT design, shown in Figure I, is based on replicated cell blocks,

floating point functional units, and packet routing networks. Eaeh cell block contains

one or more logic and integer arithmetic units and a cell memory for storing a portion

of the data flow graph. Floating point operations are sent, via the routing network,

from the cell block to a functional unit. Finally, the m a y memories S ~ E , not

surprisingly, large data structures r e f e r e d by the cell blocks.

As proposed, the design supportr both eatiel parollclinn, by allowing concurrent

execution in multiple cell blocks, and pipdining. Pipelining is rchicved by atreaming

array values from the array memoriea through the -cell blocks and functional units.

Although pipelining has been used effectively on several basic numeiical problems

[Dong84], other problems need asynchronous parallel computation. Thus, thm two-tier

data flow approach is intuitively appealing, but it has not been verified extensively.

Hence, determining the efficacy of the design for sparse matrix iterations is one of our

Reed/PaMck Sparse Linear Systamm

basic goals.

Although the machine shown in Figure I remains the ultimate design goal,

engineering prototypes, and probably early commercial machines, will be based on the

reduced architecture shown in Figure 11. Among the obvious differences between the

two architectures are

a single routing network,

a l d array memory for each cell block, and

no sharing of functional units among cell blodrs.

In spite of the reduction in design complexity, many interacting design variables

remain, notably the

size of array memories,

speed and sise of routing network switches,

number of functional units, and

number of logic units in d b k k .

Because the logic units in a d blaclt b e the floating point operations to the

functional units, it b pu t i cu ldy important for pipelined matrix compuktions to hoe

enough logic unib to keep the fumttiolrrl units busy. Thus, our wconduy goal b

determining a combination of design values for the reduced architecture capable of

efficiently execution sparse matrix iterations.

A data flow solution of the sparse matrix problem requins an appropriate problem

partitioning. Figure I11 illustrates one such parallel computation achema for (2). The

matrix A and the vectors e and z (~ + ') (denoted by XN), with the rows possibly

rearranged, are partitioned into M sets of contiguous rows. The resulting parallel

computation for one iteration can be defined symbolically as

ford I in 11, MI

endfor
XN [I] := A [I] * X + C [I]

After each iteration, a norm of the vector XN - X must be checked for convergence. If

convergence has occurred or the maximum allowable number of iterations has been

exceeded, the iteration halts; otherwise X is replaced by XN, and the iteration step is

reputed. .

Appendix A contains a static data flow program, written in VAL [Acke82],

realiting this schema In mapping this program onto the static data flow architecture,

we have made the following assumptions:

Each of the A4 partitions of the iteration matrix A and the vector c are stored in a

different array memory.

The entire z (~) vector is duplicated in e u h array memory.

All arithmetic operations d t e d with a partition are localized to a single PE

(cell block/functional unit pair).

Convergence testing is done in two ph-. First, each PE tests for convergence of

its locally held X values and broadcasts the resulting convergence flag, along with

the newly computed z values, to all other PES. Finally, each PE "onds" the local

convergence flags it received to determine global convergence.

Sparm Linear syrtema

The operations on each row of the iteration matrix are pipelined.

Figure IV shown the stractun of the VAL code executing on a single PE.

This mapping nalizes parallelism at both machine levels, the spatid parallelism

resulting from partitioning the matrix acr- Ph, and the pipelined parallelism

resulting from concurrent udt of logic unib, functional unita, and the array memory in

a single PE.

As we have noted, the static data flow architecture provides two kveh of

p a r d e b , pipdbed and spatid. The first r e q u k only information t d e r l o d to 8

PE and can be analysed independent of the routing network. The kvd of spatial

p a r a l l e l i i however, depends heavily on the ability of the routing network to quickb

transfer data from PE to PE. Hence, we develop two performance modela, a pipelined

model baad on the execution dependencies of the data flow code 104 to an individual

PE, and 8 spatial model baaed on PE computation ths (the pipelined model) and

communication among PEQ.

Using these two modela, we can then predict performura aa a function of both the

number and sir;e of matrix putitions and the matrix qmrsity.

Pipdinkg Model

Prior performance analyses of computationa on the static data flow machine

[DennBlb) have concentrated on estimated operation counts and the expected number

of array memory accemea. Although the# are important, the number of potentially

parallel operations at each time instant is really needed. The latter difftra from a

simple opastion count becauae it de& the execution dependenci- impoeed by the

8

structure of the data flow graph. If a data flow graph is well structured and amenable

to pipelining, performance will be good [Denn83]. Frequently, however, the structure of

a data flow graph precludes effective pipelining. The most serious such limitation is the

presence of recurrences.

Consider a recurrence function f (*) of the form

zi = f (ai 3 zi-1, - ,ZiJ m < i < n

that accepb a sequence { a i } as input and produces another sequence {zi} as its

output. Each zi depends on the previous m zi valuen and cannot be computed until

b

they are determined. If f (*) requires d time units to evaluate, then a new 3 will be

produced only every d time units. As Figure V shows, this corresponds to a graph

cycle of length d . Although there are well-known techniques for breaking recurrences

when f (*) is a lincur function, and solving them in parallel /Kuck78], pipelined

evaluation of arbitrary recurrences is intractable.

Just as recurrences frequently occur in Fortran do loop, for-iter loops in a static

data flow language like VAL can a b cause recurrenceu. At each iteration, a roo-itu

computes one or more values that depend on previous iterations. Thcse dependencieo

are realized aa cycle8 in 8 static data flew graph. Thw, any model of pipehing on a

static data flow machine must d e c t the performrsce degradation attributable to

cycles.

To reflect this performance degradation, we formally define a graph step M the

simultaneous firing of one or more cells of a static data flow graph. Then a cycle is a

series of graph steps that returns the static data flow graph to the same firing state.

The number of steps in a cycle is determined solely by the logical dependency structure

of the graph. We say a graph is fully pipelined if its cycle length is unity.

Reed/Patrick Sparaa Linear Symtema

The time needed to actually execute a cycle is a function of the number of

potentially accutabk operations at each graph step and the available functional units.

Consider the number of logical operations 0, potentially executable at each graph step.

If each such operation requires TI time units and there are N, logic units available,

evaluation of the logic operations at each time step will require

time unita (If an infinite number of logic units were! available, 0, T, time atepa would

still be needed, hence the ceiling.) Similar functions exist for the 5oating point and

memory ~CCUJIS delays at each graph step. Thus, we can define the execution time of a

cycle u)

We group logic, floating point, and memory operatioam sepurtcly h u m d

potentidy has dfiertnt execution time. An amnamed aulier, there b a single array

memory a-ed to d PE. if there are additional unitr or the array memory is

interkved, the third term of (3) can e d y be adjmbd u appropriate.

We note that the f a r C canad be factored into the individual of (3).

The number of graph step per cycle re9ecta the dependency structure of the graph and

cannot be reduced by the application of additional functional units.

Spatial Comrwnieocion Model

At the spatial level, the performance of a static data flow machme in dependent on

the effective exchange of data through the routing network. An p r o p o d , thm routing

10

network will be constructed from k x k router units. Each such router accepts packets

at each of k input ports and forwards them, first-come-first-serve, to one of its k

output ports. Thus, to connect N PES, a routing network must contain logk N stages

of routers, each containing N /k k x k routers.

Routing networks of this type have been studied extensively, both by simulation

(Dim811 and analysis [Krus83]. These studies have shown that the source to destination

traffic distribution and the network loading are the dominant factors in delay

experienced by packets.

In the row partitioned sparse matrix schema described earlier, each PE broadcasts

its local convergence flag and a group of floating point values to all other PES at each

iteration. Because many PES are simultaneously injecting packets into the routing

network, packets will experience queueing delays a t individual routers. If the order of

transmissions to destination nodes is randomized, then the traffic distribution will be

nearly random. With this randomization, we can adopt a delay model recently

proposed by Kruskal (Krus831. Krusksl’s model predicts s queueing delay of

and a mean queue length of

at each router input, where p is the probability that new packet arrives at a router

input during an interval of length T,, , the router service time.

Because each PE hss many floating point values to transmit each iteration, we

assume each PE injects a new packet into the routing network aa Boon M its previous

Reed/P atrick Sparma Linear Symtemr

11

packet have been miad at the initial router. (The actual communication load will be

likely be lower than thk Hence, we are conoervative in estimating the communication

delays.) We approximate this by assuming that the mean queue length, X, at each

router input, is unity. Solving the equation,

-
n = l

for p , we obtain

p = [&I [&[aLA]l'*]. (5)

The total delay for a PE to send N packeta to M -1 other PES is then approximately

whve p is given by (5).

In estimating the performance of the row partitioned schema, we concentrated on

the primuy computation components of an iteration:

0 inner product,

0 convergence ukukt ion ,

and the communication needed to support them. We then analysed the data flow

graph of each component to determine cycle lengths and operation count., determined

the cycle execution time using (3), and combined this with the estimated

communication time (6) to predict the time needed for a Bin& iteration.

R e e d / P e k

12

A detailed derivation of cycle lengths and execution times for all three components

is a lengthy, repetitious endeavor. Hence, we present an analysis of only the inner

product and the communication needed to support the other two steps. (The interested

reader can find complete analyses in [ReedbSb].)

Before analyzing the inner product routine, we must dig- briefly to explain the

operational semantics of static data flow graphs. Each node or cell of such a graph

consists of an operator, storage for one or more opcrunds, and pointer(s) to the

destination cell(s) that will receive the result. Because each cell contains its own

operands, a cell cannot fire (apply its operator to its operands) until all its destination

cells are ready to receive new operands. As an immediate consequence of this, only

alternate cells in a pipeline can fire simultaneously.

Mot& Notation and Auumptionr

Because the distribution and number of non-zero elements in a matrix determine

the number of floating point operations that must be performed, a formal model of

matrix sparsity is needed.

Following our earlier work [Reed84], we m u m e the elements of the matrix A are

randomly non-zero with probability P (i.e., p (aii # 0) = P), 8s defined below. In

our model of matrix sparsity, the probability function P b determined by imposing two

very weak conditions on A . First, we require each row of A to contain at least 2

non-zero elements, each randomly distributed throughout the row. Second, each row

element not known to be one of the 2 non-cero values is itself assumed to be non-zero

with probability q .

Recd/Petrick Sparse Linear Syrtemr

13

Given the two conditions above, the value of P Can be derived using a

straightforward application of conditional probabilities. We define two events:

E:
F:

aij is one of the 2 non-zero elements in row i
aij is a non-zero element with probability q but not one of the 2 non-zero
elements

Then, with N being the number of rows in A ,

2 = x(1 - q) + q.

Finally, we require 2 to be greater than zero (i.e., there is at leaat one nom- element

in each row). This notation, and that introduced throughout the remainder of our

analysis, ia summarized in Tables I and 11.

Inner Product Operotion

Figure VI shows the data flow graph for the inn& product routine. Thii graph,

and all others used in our analysis, were p r o p o d by Gu, urd Dennis [G d l] u the

output of a trannlator for our VAL code.

The non-sero elements of a row of the matfix A and the vcctor z are pipeiind

from the array memory into the data flow graph of Figure VI. Using a vector of

column indices of non-zero elements in the row of A , the subgraph M.tchs;, detail not

shown, generates a stream of truth values that permit values of the z vector

corresponding to those non-zero elements of A to reach the multipliution cell. The

resulting products pama to the addition cell where they are added to the running sum.

Reed/P- spalwLine8rsyrknr

14

The subgraph Enum/TF, detail also not shown, generates a stream of S -1 FALSE

values foliowed by one TRUE value, where S is the number of non-zero elements in the

current row of A . This in turn causes the running sum to recirculate until all products

have been accumulated.

Inner Product Cycle Time

It can be shown [Reed85b] that the subgraphs MatchX and Enum/TF each

have cycle lengths of three and require 3 and 2.33 logic operations per graph step

respectivdy. To determine the cycle length and operation counts per graph step for the

inner product, it suffices to enumerate cell firings until the graph returns to a given

state. Here, we take the firing of the addition cell as the state of interest. Table I11

shows the cell firings and operation counts at each graph step when the row of A b

denec. We see that the inner product cycle length G is three graph steps.

Clearly, the number of floating point operations in each cycle is two (cells 2 and 4)

if the row of A is dense. However, the multiplication cell receives an z value onlv if

the eorrcrrt z corresponds to a no*zcro element in t h row of A . This occurs with

probability P (N, 2, q). Hence, the expected number of floating point operations in

each graph step is

2 P (N , z, q) 0, =
G (7)

Similarly, the Enum/TF subgraph and the summation cycle fire only as many times as

there are non-zero elements in the row of A . However, the MatchX subgraph fires

once for each element of 2. Thus, we can divide the logic operations into two

categories; those that are performed each cycle, the MatchX subgraph and its

connecting cell (conditional 6), and those that are performed only when a floating point

Reed/Patrick Spans Linear Syrtema

~~~~ ~ 



1s 

operation is performed, the Enum/TF subgraph and summation cycle. As Tabk I11 

shows, the summation cycle requires, on average, one logic operation each time step. 

Thus, the expected number of logic operations in each graph step is 

MatcbX and conditional 6 Enum /TF and Summation 

( 8 )  
0, = 3.33 + 3 P ( N , Z ,  Q). 

Finally, we observe that one z value must be fetched from the array memory each 

cycle, and, if the z value correaponde to a non-zero element in A , an A value and a 

new column index must also be fetched. Hence, the number of array memory - in 

each graph step is 

x Vduc A andIndex s t u t u p  

3 + -  c CN 
- S P ( N ,  2, q )  l +  
G 

0, = 
(9) 

Because N cycles are required to compute the sum, the execution time for an inner 

product is then 

Ti, XTi, -de 

where Ti, is obtained from (3) by mbatituting the values for G ,  0, , 0, , and 

N 
M 0, from (7), (S), and (9). To compute the inner product for all - row in a PE’s 

partition of A then requirea 

time units. 

Iteration Communication T i m  

To complete the execution time model, we return to the problem partitioning 

given in Figure IV. For simplicity’s sake, we also atmume that the M matrix partitions 

Reed/Patdek spu# Linear symtmu 



16 

N 
M are of equal size, each containing - rows. 

N In each iteration, each PE initially computes an inner product for each of ita - M 
rows, adds its portion of the constant vector c to the resulting z vector, and tests for 

local convergence. Thus, the execution time for one iteration on a single PE is 

N 
M Thed = -Ti, + T" + Tle 

where T ,  and T,, are the execution times for the vector sum and local convergence 

test, respectively. (For additional notation, tee Table 11.) 

After computing local convergence, each PE broadurts its new z vector to all 

other PES. On receipt of z values from all other PES, global convergence is computed, 

and if it has not been achieved, another iteration is begun. h u m i n g  global 

convergence can overlapped with broadcasting, this requires 

Finally, the iteration time for one iteration is 

Titer = TI, + TJ.M 

Model R e d t m  

Using the iteration time model just described, we fixed several matrix and machine 

parameters and calculated iteration time as a function of the remaining parameters. 

Clearly, the number of possible parameter values is enormous and an exhaustive study 

is difficult and of dubious value. Hence, we fixed most model parameters based on 

estimates of today's hardware technology and our analysis of the algorithm's data flow 

graphs. (Table IV shows the values we assigned to the fixed parameters.) In the 

Retd/Patrick Sparma Linear Syatamr 



I7 

paragraphs below, we diauss results obtained using these representative parameter 

values. U n b J  0th- stated, all timea ate in uxonds. 

Figure VZZ 

Thii figure shows parallel iteration time for the row partitioned, pipelined schema 

as a function of matrix partitions and sparsity. Clearly, the iteration time continues to 

decline even M subatantirl numbers of PES (M) are applied. “him result invites a 

question, namely to what extent do the computation and communication requinmcnb 

of an iteration contribute to the iteration t h e .  

Figwc VZZZ 

This figure oompans a PE’s computation t h e  with its global communication 

time. Recall that a PE’s local computation time is determined by the inner product, 

vector sum, and locai convergence times. Its global communication time is detcrrmn - e d  

by the delay in trmmnbsion and d p t  of new t values via the network and the 

overlapped global convergence teeting. 

Figure VI11 dramatically shown how computation time dominates communication 

time for the row putitioned, pipeiined achema. T h e  ramlb kd us to analyse the 

computation time further and to look for dternative impkmcntationr of the algorithm 

on the static data flow d i e .  The row partitioned radon, ace- uhema nsulted. 

In thia- schema, rather than pipelining all t values from the array memory, only thosc 

z values needed are accessed. Appendix B gives the modified VAL code for the random 

access inner product. 

Reed/Patriek SpmeLinearSyrknrr 



18 

Figure I X  

This figure shows iteration time for both the row partitioned pipeline and random 

access schemas as a function of matrix partitions. The two top curves and the two 

bottom curves correspond to the pipeline and random access algorithms for sparsity 

factors q of 0.01 and 0.1, respectively. These curves demonstrate clearly the superiority 

of the random access algorithm over the pipeline algorithm for relatively sparse 

matrices. (The importance of random access array memories in the static data flow 

machine has been an open question [Gao84].) The figure also demonstrates that 

communication is not a bottleneck for either parallel algorithm. Model results were 

computed for other values of q between 0.01 and 0.1 and lay, as expected, between the 

curves presented. (Recall that q is the probability that a matrix element, not one of 

the 2 non-zero elements, is non-zero. 

Figure X 

Figure VI11 shows that a PE’s computation time dominates its global 

communication time. Moreover, a careful analysis of a PE’s computation showed that 

the time to compute an inner product dominates the vector sum and local convergence 

times. The execution time of an inner product is, in turn, determined by the floating 

point arithmetic, logic, and local memory acce~  times. 

Figure X compares the component times for both the row partitioned pipeline and 

random access algorithms as a function of matrix partitions with q of 0.04. Note that 

the time to do floating point arithmetic for both algorithms is the same. Interestingly, 

the logic times for the pipeline case dominate floating point arithmetic and local array 

memory access times. The same is not true for the random access algorithm. There the 

Reed/Pdck  Sparme Linear System 



19 

floating point arithmetic dominates both logic and local memory access times. 

This dominance of logic operation time in the pipeline algorithm suggest that 

application of additional logic units might be appropriate. 

Figure XI 

This figure shows iteration time for the pipeline algorithm as a function of matrix 

partitions and the number of logic units in a PE with a sparsity factor Q of 0.04. The 

curves demonstrate clearly the eff't of varying the number of logic units in each PE, 

and one might suppose that additional logic units would have a further saluatary a. 
However, analysis of the inner product data flow graph in F q u n  VI shows that no 

more than three or four logic units can be used at any graph step. The same is true for 

the random aceem algorithm. 

The results presented in Figure X a h  show that the time for floating point 

arithmetic dominates logic and local memory aceam times. We have not considered 

increasing the number of floating point units as our analysis shows that the two 

floating point operations required each cycle cannot be executsd in parallel. 

We have developed an analytic performance model of static data flow 

computation. The model has two component performance mode4 a pipelined model 

based on execution dependencies of the data flow eode local to an individual PE and a 

spatial model bssed on PE computation times (the pipeliied model) and 

communication among PES. 

We used this model to analyze the performance of a row partitioned, parallel, 

iterative algorithm for solving sparse linear systems of equationa Two data flow 



20 

implementations of the algorithm were compared. We showed that global 

communication of needed data among the PES was not a bottleneck for either 

implementation when using large numbers of processors. However, the performance of 

the parallel algorithm was very sensitive to the number of logic operations required by 

the different implementations. We also showed that the implementation based on 

random access of array data was far superior to the one based on pipelining when the 

matrix is sparse. As the iteration matrix becomes more dense the performance of the 

two implementations approach each other. 

Based on these results, we believe, that with careful design and attention to 

memory access patterns, iteration methods for solving large, sparse linear systems of 

equations can be implemented efficiently on a static data flow machine. 

Acknowkdgxnente 

We are particularly indebted to Jack Dennis and Guang-Rong Gao, MIT 

Laboratory for Computer Science, for many helpful and stimulating discussions 

concerning the MIT static data flow machine. 

Reed/P.Lrick Sparme Linear Syrterm 



21 

[Acke82] W. B. Ackerman, "Data Flow Languages," IEEE Computer, Vol. 15, No. 2, 
pp. 15-25, February 1982. 

[Arvi82] Arvind and K. P. Gostelow, "The U-Interpreter," IEEE Computer, Vol. 15, 
No. 2, pp. 42-50, February 1982. 

[Denn83] J. B. Dennis and G. R. Gao, "Maximum Pipelining of Array Operations on 
Static Data Flow Machine," Procccdingu of the I988 I n t c m t i o d  
Confkence on Pardel Proceming, Bellaire, Michigan, August 1983. 

[Denn84a] J. B. Dennis, "Data Flow Ideas for Supercomputers," Procecdingu of the 
IEEE COMPCON, pp. 15-19, February 1984. 

[Dong841 J. Dongarra, F. Gustavson, A. Karp, "Implementing Linear Algebra 
Algorithms for Dense Matrices on Vector Pipeline Muhiinea," SIAMRccriccP, 
VO~. 26 , pp. 91-112. 

[Dennblb] J. B. Dennis, G. Gao, and K. W. Todd, "Modeling the Weather with a Data 
Flow Supercomputer," IEEE Transcrctionr OIL Computer, Vol. G33, No. 7, 
pp. 592-603, July 1984. 

[Dirs81) D. M. Diaa and J. R. Jump, "Packet Switching Interconnection Networks for 
Modular Systems," IEEE Computer, Vol. 14, pp. 43-54, December 1981. 

[Gao84] G. R. Gro, priouk communication. 

[Krua83] C. P. K r u h l ,  "The Performance of Multbtage Interconnection Networh 
for Multipmcemoru," IEEE Trerucrctionr on Cornputera, Vol. C-32, No. 12, 
pp. 1091-1098, December 1983. 

[Kuck'lS] D. J. Kudr, The Structon of Computcrr and Comprtatiow, John Wiley and 
SOM, 1978. 

[Reed841 D. A. Reed and M. L. Patrick, "A Model of Asynchronous Iterative 
Algorithms for Solving Large, Sparse, Linear Systems," Proceedings of the 
1984 Intcmationd Conference on Parallel Procem-ng, Bellaire, Michigan, pp. 
402-409, August 1984. 

[Reed85a] D. A. Reed and M. L. Patrick, "Parallel, Iterative Solution of Sparse Linear 
Systems: Models and Architectures," Pardef  Computing, to appear. 

Reed/Patrick spame Linemr system8 



22 

(Reed85bJ D. A. Reed and M. L. Patrick, "Performance Analysis of Data Flow Graphs 
for Sparse Matrix Iterations," Technical Report, University of Illinois, 
Department of Computer Science, in preparation. 

[Wats82] Ian Watson and John Gurd, "A Practical Data Flow Computer," IEEE 
Computer, Vol. 15, No. 2, pp. 51-57, February 1982. 

Reed/PaMtk Sparma Linear Symtemn 



2s 

Appendix A 

VAL Code for the Row Partitioned Sparse Matrix Schema 

% The function blkitsr implements a block matrix iteration 
% of the form X(k+l) = A * X(k) + C where A and C are blocked into 
% sets of rows. Ehch block of A is stored in sparse form. COLIN [I] 
% denota the column s u k r i p t s  of the non-zero elements of block AIN [I]. 
% ROWIN [I] is an array whosc elements denote the elements of AIN [I] 
% corresponding to the begiining of a new row of A. PBDY denotes the 
% row boundaries of each block of A with PBDY [I] the number of rowB 
% in AIN [I]. M is the number of blocks, and N b the number of rows in A. 
% EPS is the convergence criterion for the iteration, and KMAX is the maximum 
% number of iterations allowed if convergence does not occur. 

fnnetion blkiter (AIN : Ur Iy  [array [real)); 
XIN : u r r y  [array [red]]; 
CIN : u r r y  [array [rod]]; 

ROWIN : anmy [army [-]I; 
PBDY : army [hategar]; 

EPS : d 

COLIN : [amy [bbg8r]]; 

w N, KMAx : b-9 

ratwarm array [array [rad]], boolean, integer) 

% The function blaltmxv m u l t i p k  a row blocked matrix, A, by 
% a vector X. The blodts of A are stored in sparse form with ELCOL [I] 
% containing the column aubmcripts of block A [I]. RBEG [I] is an u r a y  
% whose dementa point to the dements of A [I] comsponding to the 
% beginning of a new row of A. RL [I] indicitea the number of row in 
% block A [I]. N b the number of rows in A, m d  M b the number of row blocks. 
% The function returns an array whoa dements are vectors cormpnding to 
% A [I] * X. 

% The function mmr b used by blohnxv to multiply one block of A 
% and X or a block of X. BLKCOL and BLKRBEG correspond to ELCOL and 
% RBEG above. LOW is the row number of the first row in BLKA, and UP is 
% the last. This function returns a single vector and uses the following 



24 

% following function to compress a 2-D array into a 1-D array. 

tunction fallx (X : array [array [real]]; 
M : integer 

returna array [real]) 

for COMBINEDX : array [real] := X[1]; 
cnt : integer := 2; 

if cnt > M then COMBINEDX 
else iter COMBINEDX := COMBINEDX 1 )  X [cnt]; 

do 

cnt := cnt + 1; 
enditer 

endif 
endfor 

en& 

function mxv (BLKA, ALLX : rvector; 
BLKCOL, BLKRBEG : ivector; 
N, HI : integer 

returnr rvector) 

type rvector = array [real]; 
type ivector = array [integer]; 

ford I in [l, HI] % number each partition’s rows from one 
conrtruct 
for J, K : intogor := 1, 1; 

S : integer := BLKRBEG [I + 11 - BLKRBEG [I]; 
SUM : rad := 0.0; 

d o i f J > N I K > S t h a n S U M  
el.. if BLKCOL [K] = J then 

iter 
SUM := SUM + BLKA [K] * ALLX [J]; 
J := J + 1; 
K := K + 1; 

enditcr 

iter 
J := J + 1; 

enditer 

elm 

endif 
endif 

endfor 
endall 

Reed/Pakick Sparm Linear Syrtemr 



2s 

Reed/PaCdck 



28 

% The body of blokmxv begins here. 

forall I in [l, M] 
conrtruct 

mxv (A [I], fallx (X, M), ELCOL [I], RBEG [I], 
endall 

endfun 

% The function apluur computes the sum of two arrays 
% whose elements are vectors. 

function aplusa (ARIN, BRIN : array [array [real]]; 
SIZES : array [integer]; 
M : integer 

return8 array [array [real]]) 

forall I in [ 1, M] 
conrtruct 

ford J in [l, SIZES [I]] 
conrtruct 

ARIN [I, J] + BRIN [I, J] 
endall 

endall 
endfun 

% The body of blkiter begins here. 

for 
X : array [array [red]) := XIN; 
K : integer := 1; 
CONVG : boolean := fak,  

do 
if CONVG I (K=KMAX) then X, CONVG, K-1 
eln 

let 
XN : array [array [real]] := 

aplusa (blokmxv (AIN, X, COLIN, ROWIN, PBDY, N, M), CIN, PBDY, M); 

LCONA : array [boolean] := 
forall I in [I, MI 

conrtruc t 
forall J in [l, PBDY [I]] 

endall 
eval and (ab8 (XN [I, J] - X [I, J]) < EPS) 

endall; 

, 

Reed/P.trick  spar^ Linear Syrtemr 



27 

LCON : b o o k  := 
f- I in [l, MI 

endrll; 
a d  and LCONA [I] 

in 
iter 

X := XN; 
CONVG := LCON; 
K := K + 1; 

enditer 
endlet 

endif 
endlor 
end€iln 

Reed/Patrick 



28 

Appendix B 

VAL Code for the Random Access Array Memory 

function mxv (BLKA, ALLX : rvector; 
BLKCOL, BLKRBEG : ivector; 

N, HI : integer 

returne rvector) 

type rvector = array [real]; 
type ivector = array [integer]; 

ford I in [ 1, HI] % number each partition’s rows from one 
conrtruc t 

for K : integer := 1; 
J : integer := BLKCOL[l]; 
S : integer := BLKRBEG[I+l] - BLKRBEG[I]; 
SUM : real := 0.0; 
do if K > S then SUM 

elm 
iter 
SUM := SUM + BLKA [K] * ALLX [J]; 
K := K + 1; 
J := BLKCOL [K]; 

enditer 
endif 

cndfor 
endall 

endtun 

Sparaa Linear Syrtemn 



29 

Table I Matrix Notation 

I Qantity Definition 

9 

S 
z 

arbitrary N x N sparse matrix 

arbitrary constant N -vector 

number of matrix partitions 

matrix dimension 

probability that a matrix element is non-zero 

probability that a matrix element is non-zero 
given that it is not known to be zero 

fixed partition width 

number of known non-rem ekments in a row 



30 

Table II Cycle and Performance Notation 

Quantity Definition 

number of graph steps in a cycle 
number of floating point units in a PE 
number of logic units in a PE 
number of floating point operations/graph step 

number of logic operations/graph step 

number of array memory accesses/graph step 

floating point operation time 

logic operation time 

array memory access time 

inner product iteration time 

inner product cycle time 

sparse matrix iteration time 

global convergence time 

maximum of global convergence and broadcast time 

local convergence time 

iteration time on an individual PE 
vector sum time 

Reed/Patrick 

~- 

Sparse Linear Systamr 

~-~ 



Table III 
cell Firings for Inner Product 

Graph 
step 

Cells Cuttentl~ 
Firing 

I 1 6  

8 

9 

10 

I l1 

. .  

2 , 5 , 7  

396 

194 

2,597 

Reed/PaMck 

1 1 

I 1 1 1 1  

1 I I I 

1 

TCounts for MatchX and Enam/TF are omitted. 

spar# Linear systems 



Table W Performance Model Parameters 

Quantity Value 

N 
M 
9 

1 

3 

2 

2.0psec 

0.2psce 

OSpscc 

1 .opscc 

32768 

1-2048 

0.01-0.10 

Reed/Patrick Sparm Linear Syrtemr 



Quantity Val YC 

Inner Product Graph Step 
Graph Steps 

Floating Point Operations 

Memory Accesees 
Constant Logical Operations 
Variable Logical Operations 

Vector Sum Graph Step 
Graph Steps 
Floating Point Operations 

Memory Acceaeea 

Logicai Operations 

Local Convergence Graph Step 

Graph Step 
Floating Point Operations 

Memory Accames 
Logical Opuations 

Global Convergence Graph Step 

Graph Steps 
Floating Point Operations 

Memory Accames 

LO6id-M 

Vector Comprdon ( F a )  Graph SGp 
Graph Step 
Floating Point Operations 

Memory A- 
Logiical Operations 

3 

0.67 

see model 
3.33 

3.00 

4 
0.25 
1 .OO 
2.00 

3 

0.67 

0.67 

4.00 

4 
0.00 
0.25 
3.00 

4 

0.00 
0.50 
3.00 

hd/Patrick 



34 

+I- 

++ 

- FU 

-El- 

++ 

Reed/Patrick 

AM: array memory 

C B  
FU: floating point functional units 

cell block with instruction memory and logic units 

Figure I 
Static Data Flow Architecture 

Sparre Linear Syrtemr 



... ... 

Routing Network 

M arraymemory 
C B  
FU: floating point functional unit 

cell block with instruction memory and logic units 

F-n 
Prototype Static Data Flow Architecture 



XN A xo C 

Reed/Pattick 

* + 

Figure IIl 
Partitioning of a linear system 

Sparre Linear Syrtemr 



37 

Global 
nvcrgence 

Norm for Broadcast 

Convergence X Values 
Local - E Receive -& Vector Sum 

<4 [I] * x + c- 1 mer Produc '- 
A [I] * X 

X 

Reed/=& 

F-w 
Block Structure of Data Flow Iteration 

Sparme &ear Syatamr 



38 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

- -. 1 - 2 __c ... - 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

d - 1  - d 

Reed/Patrick 

Figure V 
Graph Cycle Caused by Recurrence 

Sparre Linear Syrtema 



A 

X 

Column 
Sub ripts 7 

I - T -  

Result 

Figure VI 
Data Flow Graph for Inner Product 

Reed/PaMck spu# Linear sy8temr 



40 

16- 

12 

8 
T 
1 
m 
e 

4 

( 

x q = 0.01 

v q = 0.10 

q = 0.04 
o q = 0.07 

I I I I I 
0 410 820 1230 1640 2050 

Number of Partitions M 

Figure VII 
Iteration Time for N = 32768 

Pipeline Algorithm 

Reed/Patrick Sparre Linear System 



41 

4. 
T 
m 
e 

1 

x PE local computation 
PE global communication 

0 4 10 820 1230 1640 2050 

Number of Partitions M 

Figure Vm 
Component Execution Times for One Iteration 

N = 32768 and q = 0.04 

Reed/Patrick 



12, 

9 

6 
T 
1 
m 
e 

3 

0 

42 

x q = 0.01, pipeline 
q = 0.10, pipeline 
q = 0.01, random 

v q = 0.10, random 

Reed/Patrick 

0 410 820 1230 1640 2050 

Number of Partitions M 

Figure IX 
Execution time for N = 32768 

Sparse Linear Syatemr 



. 

6- 

, 

4 
T 
m 
1 

C 

2 

x pOating point -pipeline, random 
0 logic-pipdine 
0 local wmnoly uecu-pi?cline 
v logic-r.ndom 
+ local mcmoq occew-ndom 

0 410 820 1230 1640 2050 

Number of Putitions M 

Fig~umX- 
Execution times for components of PE local computation 

N = 32768 and q = 0.04 

Reed/Patrick 



44 

20 

15 

10 
T 
1 
m 
e 

5 

0 

x Three logic units 
0 Two logic units 

One logic unit 

0 
R 

0 410 820 1230 1640 2050 

Number of Partitions M 

Figure=. 
Execution time for N = 32768 and q = 0.04 

Pipeline 

Sparse Linear Syrtemr 


